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In this paper, we discuss the flow of a nonviscous and non-heat-con-
ducting gas through a channel of variable cross section under the in~
fluence of a transverse magnetic field.

For high magnetic Reynolds numbers, the flow is shown to consist of a
core and current layers at the electrodes and at the fixed channel walls.
The distributions of currents and other parameters in the core and in
the current layers are found analytically, in a linear approximation.
The Joule dissipation in the current layers may be more intense than
that in the core. The longitudinal currents and Joule dissipation in-
crease with increasing Hall parameter in the electrode layers.
Zhigulev [1] has shown that magnetic boundary layers may form in the
flow of a conducting gas when there is a high magnetic Reynolds num-
ber (Rm > 1). He illustrated this situation by the shielding of a plasma
flow from the magnetic fields produced near a plate which is electri=
cally isolated from the plasma and through which a current is flowing.
In an incompressible fluid, the layer thickness is proportional to Rpi’2,
Morozov and Shubin [2] have offered a linear-approximation treatment
of the structure of the electromagnetic near-electrode layers which
arise during the flow of a nonviscous plasma with a high Ry and a
small "exchange” parameter £ & H/Rpy,, for flow transverse to 2 mag-
netic field and near a corrugated wall. They pointed out the possible
formation of "dissipationless” near-electrode layers with thicknesses on
the order of the Debye or electron Larmor radii, and a "dissipative”
layer whose thickness increases along the length of the electrodes and
is proportional to (Rmcé/czr)'l/z, where cg and c are the magnetic
and thermal sound velocities. Morozov and Shubin studied the proper-
ties of dissipationless and dissipative electromagnetic layers at seg-
mented accelerator electrodes through which a current is passing, for
an arbitrary "exchange” parameter, in [2] and [3], respectively. The
exchange parameter § was found in [4].

Such layers should also exist at solid electrodes and at the nonconduct-
ing wallsof an accelerator channel. Study of the two-dimensional flow
in a channel is significantly simplified when such layers are present.

1. Let us consider the planar flow of a conducting
gas transverse to a magnetic field in a channel of var-
iable cross section (Fig. 1). The channel walls may be
either electrodes or insulators. We make the following
assumptions: 1) The flow is quasi neutral and steady
state. 2) The gas is nonviscous and non-heat-conduct-
ing. 3) The external magnetic field is uniform and di-
rected along the z-axis, and there is no current along
this axis, so the net magnetic field is along z and is a
function of x and y. 4) The terms in the Ohm equation
proportional to the gradients of the pressure and the
electron temperature, and the terms related to the
slipping of ions are negligible [5]. In dimensionless
form, this equation is

1 H
WVXB+&W(VXB)XB=_V¢+VXB' (1.1)

5) The potential drop in the layers thinner than the
dissipative layer is negligible.
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Under these conditions, the flow is described by the
following system of equations:
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All these quantities are dimensionless. The density
p, the velocity v, the magnetic field B, the tempera-
ture T, and the degree of ionization « are expressed
in units of their values in the initial cross section;
these values are denoted by the subscript "0." The
channel width at this cross section is used as the unit
of length.

The similarity criteria are the following quantities:
Ry, the magnetic Reynolds number; M, the Mach
number; A, the Alvén number; H, the Hall parameter;
and vy, the ratio of heat capacities:
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If the changes in the dimensionless quantities in the
channel are small in comparison with unity; that is, if

vt~ lp— 1|~ B —1|~e<1,

then these equations can be linearized. In this proce-
dure, the nonlinear term with the Hall effect disappears
from the first, or induction equation, if the parameter
H/Ryy, is not too large; that is, if H/Ry, <« 1/e. Simi-
larly, the nonlinear term describing Joule dissipation
disappears from the energy equation when MzAZ/Rm 3
« 1/e. After some transformations, the system of
linearized equations becomes
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Here u and v are the longitudinal and transverse com-
ponents of the flow velocity (Fig. 1).



The boundary conditions are as follows: 1) The ve-
locity component normal to the channel wall (imper-
meable to the gas) is zero; in the linear approximation;
this is described by

v = (2), (1.4)

where y = f(x) is the shape of the channel wall. 2) Ata
nonconducting wall, the normal component of the elec-
tric current is zero; in the linear approximation, this
leads to the boundary condition

9Bloz = 0, (1.5)
that is, at this wall the net magnetic field is constant:

B = const.

3) At an electrode, the tangential component of the
electricfield intensity is continuous; at anideally con-
ducting electrode, there is no electric field, and the

boundary condition for the magnetic field in the linear -

approximation becomes

4B 4B

=5 (1.6)

2. When Ry, » 1, the induction equation simplifies,

and system (1.3) reduces to the following, after some
conversions:
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Here 1/Mp2 = 1/M? + A% = ch/vh is the square of the
ratio between the velocity of the fast magnetoacoustic
wave propagating transverse to the magnetic field and
the flow velocity.

System (2.1) has an obvious meaning: the flow of an
ideally conducting gas transverse to a magnetic field
is described in this approximation by the same equa-
tion as the flow of a neutral gas, except that the Mach
number M is replaced by Mg.

When Mp > 1, system (2.1) has simple analytic so-
lutions. If the channel cross section away from the
plane x = 0 changes in such a manner that the lower
wall is described by y = f;(x), while the upper wall is
described by the straight line y = f£,(x) = 1, and if the
flow is uniform in this cross section, the solution is
given by
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Here we have
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Figure 2 shows the electric-current lines, that is,
the lines B = const (solid lines) and the gas stream-
lines (dashed lines) in the channel for My =2, £, =
= —0.02x%, and f, = 1. In this case, the electric-cur-
rent lines are straight lines with breaks, which are
slight discontinuities. The current density normal to
the channel wall changes abruptly at points separated
by a distance 2(MZB - 1)1/2.

When the flow parameters are averagedover a cross
section, the usual linear-approximation relations for
a quasi-one-dimensional flow are obtained. In partic-
ular, we find the following for the longitudinal velocity:

1 ,2
p— S udy.

Here f, — f, is the distance between channel walls.

8. Solution (2.3) for the magnetic field does not sat-
isfy boundary conditions (1.5) and (1.6). In particular,
the current distribution in the flux core does not de-
pend on whether the channel wall is a conductor or a
nonconductor. The current redistribution required to
satisfy the boundary conditions on the magnetic field
should occur in the current boundary layer.

Under the assumption that this layer is thin, and
with the standard (in boundary layer theory [6]) evalu-
ations of the terms in Eqs. (1.3), one can simplify
these equations. The induction equation for the current
layer becomes

i 2= hY -
<u 'Mgg_—l'iv <u>—)2

,?B 08B 0B
3 0r Gz " (3.1)
Here and below, the superscript ° denotes quantities
evaluated at the boundary between the flow layer and
core. This equation can be rewritten as
a9
26.—;f =2 (3.2)

Solutions are given below for the layer at the lower
channel wall, at whichy = 0. Theboundary condition on
this layer at y = 0 is condition (1.5) for an insulator or
(1.6) for an electrode; also, as y — =, the solution
should become equal to solution (2.3) for the lower
boundary of the flow core. In addition, the initial con-
ditions B(0,y) and jx(0,y) must be specified to solve
parabolic equations (3.1) and (3.2).

Accordingly, current-layer problems under these
conditions are mathematically equivalent to problems
involving linear heat flow [7] and have analogous solu-
tions. On the other hand, this problem is very similar

/J /
1

117773

545



3]
////z\

] (b
1)
////L T
g 1 7
Fig. 3
U, zz
i
4
16
a8 ]
1 \3
' ] ] 6 ) T
b7/
Fig. 4

to that of a viscous boundary layer with slipping, which
was solved in the linear approximation in [8].

The field and current distributions near a noncon-
ducting wall are given by Eq. (3.1) with the boundary
conditions

D=1 for y=o, B— B° for y — »,
B = B0, y)

In a channel of variable cross section, and in which the
magnetic fields are described by (2.3), the solution in
a layer at a nonconducting wall of parabolic form,

fl = 1/2 axz,

is, for 0 < x < 2(M%, — 1)!/2

for x=0.

Mg

B=1+ ,:”{1—[1_c1>(r)1(1 +2r%) —

— ViR rexp(— 2r2)} .
Here ®(r) is the probability integral, and r = y/2nvx.
Figure 3a shows the electric-current lines in the
layer at a nonconducting wall for MzB =2, f1 = —0.02x%,
and »n = 1072, In the layer, the current slips along the
surface, and the current density is much greater than
in the flow core. This leads to a greater rate of Joule
energy dissipation in the current layer. The electro-
magnetic forces are perpendicular to the wall, In an
expanding channel, in which a flow with Mg > 1 is ac-
celerated, the current slipping along a nonconducting
wall in the layer tends to detach the flow from the wall.
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Fig. 5

The currents in layers at electrodes are described
by Eq. (8.2) with boundary conditions

jx = H (%2 8j,/oy + 0B°/oz) fory=o,
Joo> jud = — MBz]c'?for y - oo,
Jx=17:0, y) =9 (y) for z=o0.

If the current is distributed in the flow core according
to (2.3), and the electrode is of parabolic shape, fi=
= ax2/2, the longitudinal current in the layer in the re-
gion 0 < x < 2(M§3 - 1)1/2 will be given by

: H
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The electric-current lines at an ideally conducting
anode are shown in Fig. 3d for M§3 =2, fi = —0.02x%,
% =107%, H=30, and § = 0.

The thickness of the current layer in both cases is
of the order of

1 1

=~ vrarom

M .
= WB R, ",
and differs by the factor Mg/M = ¢T/cg < 1 from the
layer thickness in an incompressible fluid which is a
good conductor [1].

The Joule dissipation in the layer is more intense
than in the core when H > (Mg — 1)1/2. Near the elec-
trode this dissipation increases in proportion to (1 +
+ HY. Figure 4 shows the distribution of Joule dissipa-
tion in a layer at an anode for (Mi3 = 2 [in this figure,
1)H=10; 2)H=1; 3) H = 3].

The variation in the electric current near a slight-
discontinuity line (Fig. 2) can be described by an equa-
tion analogous to (3.2) and written in terms of coordi-
nates including the slight-discontinuity line. This
equation describes the structure of the slight discon-
tinuity ina nonviscous, electrically conducting, and non-
heat-conducting plasma; the direction of the electric~
current lines changes continuously in a layer on the
order of & in thickness.

On the basis of this discussion, we can draw a pic-
ture of the currents and other flow parameters at the



entrance to a channel formed by insulators and elec-
trodes. Figure 5 shows the electric-current lines
(solid curves) and the gas streamlines (dashed curves)
for an expanding channel and for Mp? = 2, f1= —0.04x2,
fo=1, n=107%2, and H= 3,

In conclusion, the author thanks A. I. Morozov for
useful discussion of these results.
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